Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 17.233
1.
Environ Microbiol Rep ; 16(3): e13263, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705733

Deep-sea methane seeps are amongst the most biologically productive environments on Earth and are often characterised by stable, low oxygen concentrations and microbial communities that couple the anaerobic oxidation of methane to sulfate reduction or iron reduction in the underlying sediment. At these sites, ferrous iron (Fe2+) can be produced by organoclastic iron reduction, methanotrophic-coupled iron reduction, or through the abiotic reduction by sulfide produced by the abundant sulfate-reducing bacteria at these sites. The prevalence of Fe2+in the anoxic sediments, as well as the availability of oxygen in the overlying water, suggests that seeps could also harbour communities of iron-oxidising microbes. However, it is unclear to what extent Fe2+ remains bioavailable and in solution given that the abiotic reaction between sulfide and ferrous iron is often assumed to scavenge all ferrous iron as insoluble iron sulfides and pyrite. Accordingly, we searched the sea floor at methane seeps along the Cascadia Margin for microaerobic, neutrophilic iron-oxidising bacteria, operating under the reasoning that if iron-oxidising bacteria could be isolated from these environments, it could indicate that porewater Fe2+ can persist is long enough for biology to outcompete pyritisation. We found that the presence of sulfate in our enrichment media muted any obvious microbially-driven iron oxidation with most iron being precipitated as iron sulfides. Transfer of enrichment cultures to sulfate-depleted media led to dynamic iron redox cycling relative to abiotic controls and sulfate-containing cultures, and demonstrated the capacity for biogenic iron (oxyhydr)oxides from a methane seep-derived community. 16S rRNA analyses revealed that removing sulfate drastically reduced the diversity of enrichment cultures and caused a general shift from a Gammaproteobacteria-domainated ecosystem to one dominated by Rhodobacteraceae (Alphaproteobacteria). Our data suggest that, in most cases, sulfur cycling may restrict the biological "ferrous wheel" in contemporary environments through a combination of the sulfur-adapted sediment-dwelling ecosystems and the abiotic reactions they influence.


Bacteria , Geologic Sediments , Iron , Methane , Oxidation-Reduction , Sulfur , Methane/metabolism , Iron/metabolism , Sulfur/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Seawater/microbiology , Seawater/chemistry , Sulfides/metabolism , Sulfates/metabolism , RNA, Ribosomal, 16S/genetics , Phylogeny
2.
Top Curr Chem (Cham) ; 382(2): 13, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38607428

The synthesis of thioether derivatives has been explored widely due to the potential application of these derivatives in medicinal chemistry, pharmaceutical industry and material chemistry. Within this context, there has been an increasing demand for the environmentally benign construction of C-S bonds via C-H functionalization under metal-free conditions. In the present article, we highlight recent developments in metal-free sulfenylation that have occurred in the past three years. The synthesis of organosulfur compounds via a metal-free approach using a variety of sulfur sources, including thiophenols, disulfides, sulfonyl hydrazides, sulfonyl chlorides, elemental sulfur and sulfinates, is discussed. Non-conventional strategies, which refer to the development of thioether derivatives under visible light and electrochemically mediated conditions, are also discussed. The key advantages of the reviewed methodologies include broad substrate scope and high reaction yields under environmentally benign conditions. This comprehensive review will provide chemists with a synthetic tool that will facilitate further development in this field.


Disulfides , Hydrazines , Light , Metals , Sulfur
3.
Zool Res ; 45(3): 468-477, 2024 May 18.
Article En | MEDLINE | ID: mdl-38583938

Iron-sulfur clusters are essential cofactors for proteins involved in various biological processes, such as electron transport, biosynthetic reactions, DNA repair, and gene expression regulation. Iron-sulfur cluster assembly protein IscA1 (or MagR) is found within the mitochondria of most eukaryotes. Magnetoreceptor (MagR) is a highly conserved A-type iron and iron-sulfur cluster-binding protein, characterized by two distinct types of iron-sulfur clusters, [2Fe-2S] and [3Fe-4S], each conferring unique magnetic properties. MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome (Cry) and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation. Although the N-terminal sequences of MagR vary among species, their specific function remains unknown. In the present study, we found that the N-terminal sequences of pigeon MagR, previously thought to serve as a mitochondrial targeting signal (MTS), were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound. Moreover, the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex. Thus, the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting. These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.


Iron-Sulfur Proteins , Animals , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Iron/metabolism , Sulfur/metabolism
4.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38612474

The advent of deep learning algorithms for protein folding opened a new era in the ability of predicting and optimizing the function of proteins once the sequence is known. The task is more intricate when cofactors like metal ions or small ligands are essential to functioning. In this case, the combined use of traditional simulation methods based on interatomic force fields and deep learning predictions is mandatory. We use the example of [FeFe] hydrogenases, enzymes of unicellular algae promising for biotechnology applications to illustrate this situation. [FeFe] hydrogenase is an iron-sulfur protein that catalyzes the chemical reduction of protons dissolved in liquid water into molecular hydrogen as a gas. Hydrogen production efficiency and cell sensitivity to dioxygen are important parameters to optimize the industrial applications of biological hydrogen production. Both parameters are related to the organization of iron-sulfur clusters within protein domains. In this work, we propose possible three-dimensional structures of Chlorella vulgaris 211/11P [FeFe] hydrogenase, the sequence of which was extracted from the recently published genome of the given strain. Initial structural models are built using: (i) the deep learning algorithm AlphaFold; (ii) the homology modeling server SwissModel; (iii) a manual construction based on the best known bacterial crystal structure. Missing iron-sulfur clusters are included and microsecond-long molecular dynamics of initial structures embedded into the water solution environment were performed. Multiple-walkers metadynamics was also used to enhance the sampling of structures encompassing both functional and non-functional organizations of iron-sulfur clusters. The resulting structural model provided by deep learning is consistent with functional [FeFe] hydrogenase characterized by peculiar interactions between cofactors and the protein matrix.


Chlorella vulgaris , Hydrogenase , Metals , Iron , Hydrogen , Sulfur , Water
5.
BMC Plant Biol ; 24(1): 257, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594609

BACKGROUND: Sulfur (S) is a mineral nutrient essential for plant growth and development, which is incorporated into diverse molecules fundamental for primary and secondary metabolism, plant defense, signaling, and maintaining cellular homeostasis. Although, S starvation response is well documented in the dicot model Arabidopsis thaliana, it is not clear if the same transcriptional networks control the response also in the monocots. RESULTS: We performed series of physiological, expression, and metabolite analyses in two model monocot species, one representing the C3 plants, Oryza sativa cv. kitaake, and second representing the C4 plants, Setaria viridis. Our comprehensive transcriptomic analysis revealed twice as many differentially expressed genes (DEGs) in S. viridis than in O. sativa under S-deficiency, consistent with a greater loss of sulfur and S-containing metabolites under these conditions. Surprisingly, most of the DEGs and enriched gene ontology terms were species-specific, with an intersect of only 58 common DEGs. The transcriptional networks were different in roots and shoots of both species, in particular no genes were down-regulated by S-deficiency in the roots of both species. CONCLUSIONS: Our analysis shows that S-deficiency seems to have different physiological consequences in the two monocot species and their nutrient homeostasis might be under distinct control mechanisms.


Arabidopsis , Oryza , Genes, Plant , Arabidopsis/metabolism , Gene Expression Profiling , Sulfur/metabolism , Homeostasis , Gene Expression Regulation, Plant , Oryza/metabolism , Plant Roots/metabolism
6.
Chemosphere ; 355: 141859, 2024 May.
Article En | MEDLINE | ID: mdl-38561161

To promptly and simply create highly crystalline S/C co-doped TiO2 (SC-TiO2) photocatalysts at room temperature and atmospheric pressure, we suggest a novel plasma-assisted sol-gel synthesis method. This method is a simultaneous synthetic process, in which an underwater plasma undergoes continuous reactions to generate high-energy atomic and molecular species that enable TiO2 to achieve crystallinity, a large surface area, and a heterogeneous structure within a few minutes. In particular, it was demonstrated that the heterogeneously structured TiO2 was formed by doping that sulfur and carbon replace O or Ti atoms in the TiO2 lattice depending on the composition of the synthesis solution during underwater plasma treatment. The resultant SC-TiO2 photocatalysts had narrowed bandgap energies and extended optical absorption scope into the visible range by inducing the intermediate states within bandgap due to generation of oxygen vacancies on the surface of TiO2 through synthesis, crystallization, and doping. Correspondingly, SC-TiO2 showed a significant degradation efficiency ([k] = 6.91 h-1) of tetracycline (TC, antibiotics) under solar light irradiation, up to approximately 4 times higher compared to commercial TiO2 ([k] = 1.68 h-1), resulting in great water purification. Therefore, we anticipate that this underwater discharge plasma system will prove to be an advantageous technique for producing heterostructural TiO2 photocatalysts with superior photocatalytic efficiency for environmental applications.


Carbon , Light , Carbon/chemistry , Anti-Bacterial Agents , Tetracycline , Sulfur , Titanium/chemistry , Catalysis
7.
Mar Environ Res ; 197: 106481, 2024 May.
Article En | MEDLINE | ID: mdl-38593647

Marine distribution of dimethylsulfoniopropionate (DMSP) and its cleavage product dimethyl sulfide (DMS) is greatly affected by the community structures of bacteria, phytoplankton, and zooplankton. Spatial distributions of dissolved and particulate DMSP (DMSPd,p), and DMS were measured and their relationships with DMSP lyase activity (DLA), abundance of DMSP-consuming bacteria (DCB), and the community structures of phytoplankton, zooplankton, and bacteria were determined during summer in the South China Sea (SCS). The depth distributions of DMSPd,p exhibited a similar trend with Chl a, reaching their maxima in the mixing layer. The DMS concentration was positively correlated with DCB abundance and DLA, indicating that DCB and DMSP lyase had a significant effect on DMS production. High DMS concentrations in the horizontal distribution coincided with high DCB abundance and DLA and may be due to the rapid growth of phytoplankton resulting from the high dissolved inorganic nitrogen concentration brought by the cold vortices. Moreover, the highest copepod abundance at station G3 coincided with the highest DMS concentrations there among stations B4, F2, and G3. These results suggest that copepod may play an important role in DMS production. The bacterial SAR11 clade was positively correlated with DLA, indicating its significant contribution to DMSP degradation in the SCS. These findings contribute to the understanding of the effect of the community assemblage on DMSP/DMS distributions in the SCS dominated by mesoscale vortices.


Seawater , Sulfonium Compounds , Animals , Seawater/chemistry , Sulfur/metabolism , Sulfonium Compounds/chemistry , Sulfonium Compounds/metabolism , Sulfides/metabolism , Bacteria/metabolism , Phytoplankton , China , Zooplankton/metabolism
8.
Sci Rep ; 14(1): 8526, 2024 04 12.
Article En | MEDLINE | ID: mdl-38609406

Understanding the efficacy of alternative phosphorus (P) sources in tropical soils is crucial for sustainable farming, addressing resource constraints, mitigating environmental impact, improving crop productivity, and optimizing soil-specific solutions. While the topic holds great importance, current literature falls short in providing thorough, region-specific studies on the effectiveness of alternative P sources in Brazilian tropical soils for maize cultivation. Our aim was to assess the agronomic efficiency of alternative P sources concerning maize crop (Zea mays L.) attributes, including height, shoot dry weight, stem diameter, and nutrient accumulation, across five Brazilian tropical soils. In greenhouse conditions, we carried out a randomized complete block design, investigating two factors (soil type and P sources), evaluating five tropical soils with varying clay contents and three alternative sources of P, as well as a commercial source and a control group. We evaluated maize crop attributes such as height, dry weight biomass, and nutrient accumulation, P availability and agronomic efficiency. Our results showed that, although triple superphosphate (TSP) exhibited greater values than alternative P sources (precipitated phosphorus 1, precipitated phosphorus 2 and reactive phosphate) for maize crop attributes (e.g., height, stem diameter, shoot dry weight and phosphorus, nitrogen, sulfur, calcium and magnesium accumulation). For instance, PP1 source increased nutrient accumulation for phosphorus (P), nitrogen (N), and sulfur (S) by 37.05% and 75.98% (P), 34.39% and 72.07% (N), and 41.94% and 72.69% (S) in comparison to PP2 and RP, respectively. Additionally, PP1 substantially increased P availability in soils with high clay contents 15 days after planting (DAP), showing increases of 61.90%, 99.04%, and 38.09% greater than PP2, RP, and TSP. For Ca and Mg accumulation, the highest values were found in the COxisol2 soil when PP2 was applied, Ca = 44.31% and 69.48%; and Mg = 46.23 and 75.79%, greater than PP1 and RP, respectively. Finally, the highest values for relative agronomic efficiency were observed in COxisol2 when PP1 was applied. The precipitated phosphate sources (PP1 and PP2) exhibited a similar behavior to that of the commercial source (TSP), suggesting their potential use to reduce reliance on TSP fertilization, especially in soils with low clay contents. This study emphasized strategies for soil P management, aimed at assisting farmers in enhancing maize crop productivity while simultaneously addressing the effectiveness of alternative P sources of reduced costs.


Phosphorus , Soil , Agriculture , Brazil , Clay , Nitrogen , Phosphates , Sulfur
9.
BMC Plant Biol ; 24(1): 280, 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38609857

BACKGROUND: Orchids are grown without soil in many regions of the world, but there is a lack of studies to define the balanced and adequate nutrient solution for their cultivation, mainly in the vegetative growth phase. Therefore, this paper aims to evaluate the optimal concentration of the nutrient solution based on the proposal by Hoagland and Arnon (1950) in the vegetative growth phase capable of increasing the nutrient contents, growth, and dry matter production of Dendrobium Tubtim Siam and Phalaenopsis Taisuco Swan. In addition, this paper aims to estimate a new nutrient solution from the optimal nutrient contents in the dry matter of these orchid species to be used in the vegetative growth phase. RESULTS: Nutrient contents, growth, and dry matter production increased as the nutrient solution concentration increased up to an average concentration of 62 and 77% for D. Tubtim Siam and P. Taisuco Swan, respectively. We found that the Hoagland and Arnon solution presented a group of nutrients with concentrations above the requirement for P. Taisuco Swan (nitrogen, phosphor, calcium, and sulfur) and D. Tubtim Siam (phosphor, calcium, magnesium, and sulfur), while other nutrients in the solution did not meet the nutritional demand of these orchid species, inducing nutritional imbalance in the vegetative growth phase. CONCLUSION: We conclude that using a balanced nutrient solution created specifically for each orchid species in vegetative growth might favor their sustainable cultivation by optimizing the use of nutrients in the growing medium.


Anseriformes , Dendrobium , Animals , Calcium , Thailand , Nutrients , Sulfur
10.
Nat Commun ; 15(1): 3269, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627381

Maturation of iron-sulfur proteins in eukaryotes is initiated in mitochondria by the core iron-sulfur cluster assembly (ISC) complex, consisting of the cysteine desulfurase sub-complex NFS1-ISD11-ACP1, the scaffold protein ISCU2, the electron donor ferredoxin FDX2, and frataxin, a protein dysfunctional in Friedreich's ataxia. The core ISC complex synthesizes [2Fe-2S] clusters de novo from Fe and a persulfide (SSH) bound at conserved cluster assembly site residues. Here, we elucidate the poorly understood Fe-dependent mechanism of persulfide transfer from cysteine desulfurase NFS1 to ISCU2. High-resolution cryo-EM structures obtained from anaerobically prepared samples provide snapshots that both visualize different stages of persulfide transfer from Cys381NFS1 to Cys138ISCU2 and clarify the molecular role of frataxin in optimally positioning assembly site residues for fast sulfur transfer. Biochemical analyses assign ISCU2 residues essential for sulfur transfer, and reveal that Cys138ISCU2 rapidly receives the persulfide without a detectable intermediate. Mössbauer spectroscopy assessing the Fe coordination of various sulfur transfer intermediates shows a dynamic equilibrium between pre- and post-sulfur-transfer states shifted by frataxin. Collectively, our study defines crucial mechanistic stages of physiological [2Fe-2S] cluster assembly and clarifies frataxin's molecular role in this fundamental process.


Frataxin , Iron-Sulfur Proteins , Iron-Sulfur Proteins/metabolism , Sulfides/metabolism , Sulfur/metabolism , Carbon-Sulfur Lyases/metabolism , Iron-Binding Proteins/metabolism
11.
BMC Genomics ; 25(1): 376, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632539

BACKGROUND: Mycobacterium avium complex (MAC), including Mycobacterium intracellulare is a member of slow-growing mycobacteria and contributes to a substantial proportion of nontuberculous mycobacterial lung disease in humans affecting immunocompromised and elderly populations. Adaptation of pathogens in hostile environments is crucial in establishing infection and persistence within the host. However, the sophisticated cellular and molecular mechanisms of stress response in M. intracellulare still need to be fully explored. We aimed to elucidate the transcriptional response of M. intracellulare under acidic and oxidative stress conditions. RESULTS: At the transcriptome level, 80 genes were shown [FC] ≥ 2.0 and p < 0.05 under oxidative stress with 10 mM hydrogen peroxide. Specifically, 77 genes were upregulated, while 3 genes were downregulated. In functional analysis, oxidative stress conditions activate DNA replication, nucleotide excision repair, mismatch repair, homologous recombination, and tuberculosis pathways. Additionally, our results demonstrate that DNA replication and repair system genes, such as dnaB, dinG, urvB, uvrD2, and recA, are indispensable for resistance to oxidative stress. On the contrary, 878 genes were shown [FC] ≥ 2.0 and p < 0.05 under acidic stress with pH 4.5. Among these genes, 339 were upregulated, while 539 were downregulated. Functional analysis highlighted nitrogen and sulfur metabolism pathways as the primary responses to acidic stress. Our findings provide evidence of the critical role played by nitrogen and sulfur metabolism genes in the response to acidic stress, including narGHIJ, nirBD, narU, narK3, cysND, cysC, cysH, ferredoxin 1 and 2, and formate dehydrogenase. CONCLUSION: Our results suggest the activation of several pathways potentially critical for the survival of M. intracellulare under a hostile microenvironment within the host. This study indicates the importance of stress responses in M. intracellulare infection and identifies promising therapeutic targets.


Mycobacterium avium Complex , Mycobacterium avium-intracellulare Infection , Humans , Aged , Mycobacterium avium Complex/genetics , Transcriptome , Mycobacterium avium-intracellulare Infection/microbiology , Gene Expression Profiling , Oxidative Stress , Nitrogen , Sulfur
12.
Food Chem ; 448: 139112, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38569404

Ginseng is a most popular health-promoting food with ginsenosides as its main bioactive ingredients. Illegal sulfur-fumigation causes ginsenosides convert to toxic sulfur-containing derivatives, and reduced the efficacy/safety of ginseng. 24-sulfo-25-ene ginsenoside Rg1 (25-ene SRg1), one of the sulfur-containing derivatives, is a potential quality control marker of fumigated ginseng, but with low accessibility owing to its unknown generation mechanism. In this study, metals/bisulfite system involved generation mechanism was investigated and verified. The generation of 25-ene SRg1 in sulfur-fumigated ginseng is that SO2, formed during sulfur-fumigation, reacted with water and ionized into HSO3-. On the one hand, under the metals/bisulfite system, HSO3- generates HSO5- and free radicals which converted ginsenoside Rg1 to 24,25-epoxide Rg1; on the other hand, as a nucleophilic group, HSO3- reacted with 24,25-epoxide Rg1 and further dehydrated to 25-ene SRg1. This study provided a technical support for the promotion of 25-ene SRg1 as the characteristic quality control marker of sulfur-fumigated ginseng.


Fumigation , Ginsenosides , Panax , Quality Control , Sulfur , Ginsenosides/chemistry , Ginsenosides/analysis , Panax/chemistry , Sulfur/chemistry , Sulfites/chemistry , Sulfites/analysis , Metals/chemistry , Metals/analysis , Plant Extracts/chemistry
13.
Environ Microbiol Rep ; 16(2): e13248, 2024 Apr.
Article En | MEDLINE | ID: mdl-38581137

Sulphate-reducing bacteria (SRB) are the main culprits of microbiologically influenced corrosion in water-flooding petroleum reservoirs, but some sulphur-oxidising bacteria (SOB) are stimulated when nitrate and oxygen are injected, which control the growth of SRB. This study aimed to determine the distributions of SRB and SOB communities in injection-production systems and to analyse the responses of these bacteria to different treatments involving nitrate and oxygen. Desulfovibrio, Desulfobacca, Desulfobulbus, Sulfuricurvum and Dechloromonas were commonly detected via 16S rRNA gene sequencing. Still, no significant differences were observed for either the SRB or SOB communities between injection and production wells. Three groups of water samples collected from different sampling sites were incubated. Statistical analysis of functional gene (dsrB and soxB) clone libraries and quantitative polymerase chain reaction showed that the SOB community structures were more strongly affected by the nitrate and oxygen levels than SRB clustered according to the sampling site; moreover, both the SRB and SOB community abundances significantly changed. Additionally, the highest SRB inhibitory effect and the lowest dsrB/soxB ratio were obtained under high concentrations of nitrate and oxygen in the three groups, suggesting that the synergistic effect of nitrate and oxygen level was strong on the inhibition of SRB by potential SOB.


Desulfovibrio , Petroleum , Nitrates , Sulfates , Water , RNA, Ribosomal, 16S/genetics , Bacteria , Desulfovibrio/genetics , Organic Chemicals , Sulfur , Oxidation-Reduction
14.
Sci Rep ; 14(1): 7899, 2024 04 03.
Article En | MEDLINE | ID: mdl-38570566

Hutchison's niche theory suggests that coexisting competing species occupy non-overlapping hypervolumes, which are theoretical spaces encompassing more than three dimensions, within an n-dimensional space. The analysis of multiple stable isotopes can be used to test these ideas where each isotope can be considered a dimension of niche space. These hypervolumes may change over time in response to variation in behaviour or habitat, within or among species, consequently changing the niche space itself. Here, we use isotopic values of carbon and nitrogen of ten amino acids, as well as sulphur isotopic values, to produce multi-isotope models to examine niche segregation among an assemblage of five coexisting seabird species (ancient murrelet Synthliboramphus antiquus, double-crested cormorant Phalacrocorax auritus, Leach's storm-petrel Oceanodrama leucorhoa, rhinoceros auklet Cerorhinca monocerata, pelagic cormorant Phalacrocorax pelagicus) that inhabit coastal British Columbia. When only one or two isotope dimensions were considered, the five species overlapped considerably, but segregation increased in more dimensions, but often in complex ways. Thus, each of the five species occupied their own isotopic hypervolume (niche), but that became apparent only when factoring the increased information from sulphur and amino acid specific isotope values, rather than just relying on proxies of δ15N and δ13C alone. For cormorants, there was reduction of niche size for both species consistent with a decline in their dominant prey, Pacific herring Clupea pallasii, from 1970 to 2006. Consistent with niche theory, cormorant species showed segregation across time, with the double-crested demonstrating a marked change in diet in response to prey shifts in a higher dimensional space. In brief, incorporating multiple isotopes (sulfur, PC1 of δ15N [baselines], PC2 of δ15N [trophic position], PC1 and PC2 of δ13C) metrics allowed us to infer changes and differences in food web topology that were not apparent from classic carbon-nitrogen biplots.


Amino Acids , Charadriiformes , Animals , Amino Acids/metabolism , Isotopes/metabolism , Birds/metabolism , Nitrogen/metabolism , Carbon/metabolism , Sulfur/metabolism , Nitrogen Isotopes/metabolism , Carbon Isotopes/metabolism
15.
Environ Microbiol Rep ; 16(2): e13246, 2024 Apr.
Article En | MEDLINE | ID: mdl-38575138

Metagenome assembled genomes (MAGs), generated from sequenced 13C-labelled DNA from 13C-methanol enriched soils, were binned using an ensemble approach. This method produced a significantly larger number of higher-quality MAGs compared to direct binning approaches. These MAGs represent both the primary methanol utilizers and the secondary utilizers labelled via cross-feeding and predation on the labelled methylotrophs, including numerous uncultivated taxa. Analysis of these MAGs enabled the identification of multiple metabolic pathways within these active taxa that have climatic relevance relating to nitrogen, sulfur and trace gas metabolism. This includes denitrification, dissimilatory nitrate reduction to ammonium, ammonia oxidation and metabolism of organic sulfur species. The binning of viral sequence data also yielded extensive viral MAGs, identifying active viral replication by both lytic and lysogenic phages within the methanol-enriched soils. These MAGs represent a valuable resource for characterizing biogeochemical cycling within terrestrial environments.


Methanol , Soil , Oxidation-Reduction , Metagenome , Sulfur/metabolism , Metagenomics
16.
Mar Pollut Bull ; 202: 116356, 2024 May.
Article En | MEDLINE | ID: mdl-38604079

In this study, we focus on the development and validation of a deep learning (long short-term memory, LSTM)-based algorithm to predict the accidental spreading of LSFO (low sulfur fuel oil) on the water surface. The data for the training was obtained by numerical simulations of artificial geometries with different configurations of islands and shorelines and wind speeds (2.0-8.0 m/s). For simulating the spread of oils in O(102) km scales, the volume of fluid and discrete phase models were adopted, and the kinematic variables of particle location, particle velocity, and water velocity were collected as input features for LSTM model. The predicted spreading pattern of LSFO matched well with the simulation (less than 10 % in terms of the mean absolute error for the untrained data). Finally, we applied the model to the Wakashio LSFO spill accident, considering actual geometry and weather information, which confirmed the practical feasibility of the present model.


Fuel Oils , Sulfur/chemistry , Petroleum Pollution , Water Pollutants, Chemical , Algorithms , Models, Theoretical , Computer Simulation
17.
Dalton Trans ; 53(18): 7866-7879, 2024 May 07.
Article En | MEDLINE | ID: mdl-38632950

Rhenium(I) tricarbonyl complexes are widely studied for their cell imaging properties and anti-cancer and anti-microbial activities, but the complexes with S-donor ligands remain relatively unexplored. A series of six fac-[Re(NN)(CO)3(SR)] complexes, where (NN) is 2,2'-bipyridyl (bipy) or 1,10-phenanthroline (phen), and RSH is a series of thiocarboxylic acid methyl esters, have been synthesized and characterized. Cellular uptake and anti-proliferative activities of these complexes in human breast cancer cell lines (MDA-MB-231 and MCF-7) were generally lower than those of the previously described fac-[Re(NN)(CO)3(OH2)]+ complexes; however, one of the complexes, fac-[Re(CO)3(phen)(SC(Ph)CH2C(O)OMe)] (3b), was active (IC50 ∼ 10 µM at 72 h treatment) in thiol-depleted MDA-MB-231 cells. Moreover, unlike fac-[Re(CO)3(phen)(OH2)]+, this complex did not lose activity in the presence of extracellular glutathione. Taken together these properties show promise for further development of 3b and its analogues as potential anti-cancer drugs for co-treatment with thiol-depleting agents. Conversely, the stable and non-toxic complex, fac-[Re(bipy)(CO)3(SC(Me)C(O)OMe)] (1a), predominantly localized in the lysosomes of MDA-MB-231 cells, as shown by live cell confocal microscopy (λex = 405 nm, λem = 470-570 nm). It is strongly localized in a subset of lysosomes (25 µM Re, 4 h treatment), as shown by co-localization with a Lysotracker dye. Longer treatment times with 1a (25 µM Re for 48 h) resulted in partial migration of the probe into the mitochondria, as shown by co-localization with a Mitotracker dye. These properties make complex 1a an attractive target for further development as an organelle probe for multimodal imaging, including phosphorescence, carbonyl tag for vibrational spectroscopy, and Re tag for X-ray fluorescence microscopy.


Antineoplastic Agents , Cell Proliferation , Coordination Complexes , Rhenium , Sulfur , Humans , Rhenium/chemistry , Rhenium/pharmacology , Cell Proliferation/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ligands , Sulfur/chemistry , Sulfur/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Molecular Structure
18.
Environ Sci Technol ; 58(18): 8043-8052, 2024 May 07.
Article En | MEDLINE | ID: mdl-38648493

Bisphenol A (BPA), as a typical leachable additive from microplastics and one of the most productive bulk chemicals, is widely distributed in sediments, sewers, and wastewater treatment plants, where active sulfur cycling takes place. However, the effect of BPA on sulfur transformation, particularly toxic H2S production, has been previously overlooked. This work found that BPA at environmentally relevant levels (i.e., 50-200 mg/kg total suspended solids, TSS) promoted the release of soluble sulfur compounds and increased H2S gas production by 14.3-31.9%. The tryptophan-like proteins of microbe extracellular polymeric substances (EPSs) can spontaneously adsorb BPA, which is an enthalpy-driven reaction (ΔH = -513.5 kJ mol-1, ΔS = -1.60 kJ mol-1K -1, and ΔG = -19.52 kJ mol-1 at 35 °C). This binding changed the composition and structure of EPSs, which improved the direct electron transfer capacity of EPSs, thereby promoting the bioprocesses of organic sulfur hydrolysis and sulfate reduction. In addition, BPA presence enriched the functional microbes (e.g., Desulfovibrio and Desulfuromonas) responsible for organic sulfur mineralization and inorganic sulfate reduction and increased the abundance of related genes involved in ATP-binding cassette transporters and sulfur metabolism (e.g., Sat and AspB), which promoted anaerobic sulfur transformation. This work deepens our understanding of the interaction between BPA and sulfur transformation occurring in anaerobic environments.


Sulfur , Sulfur/metabolism , Anaerobiosis , Hydrogen Sulfide/metabolism , Phenols/metabolism , Benzhydryl Compounds/metabolism
19.
ACS Nano ; 18(18): 11813-11827, 2024 May 07.
Article En | MEDLINE | ID: mdl-38657165

Nanoenabled strategies have recently attracted attention as a sustainable platform for agricultural applications. Here, we present a mechanistic understanding of nanobiointeraction through an orthogonal investigation. Pristine (nS) and stearic acid surface-modified (cS) sulfur nanoparticles (NPs) as a multifunctional nanofertilizer were applied to tomato (Solanum lycopersicumL.) through soil. Both nS and cS increased root mass by 73% and 81% and increased shoot weight by 35% and 50%, respectively, compared to the untreated controls. Bulk sulfur (bS) and ionic sulfate (iS) had no such stimulatory effect. Notably, surface modification of S NPs had a positive impact, as cS yielded 38% and 51% greater shoot weight compared to nS at 100 and 200 mg/L, respectively. Moreover, nS and cS significantly improved leaf photosynthesis by promoting the linear electron flow, quantum yield of photosystem II, and relative chlorophyll content. The time-dependent gene expression related to two S bioassimilation and signaling pathways showed a specific role of NP surface physicochemical properties. Additionally, a time-dependent Global Test and machine learning strategy applied to understand the NP surface modification domain metabolomic profiling showed that cS increased the contents of IA, tryptophan, tomatidine, and scopoletin in plant leaves compared to the other treatments. These findings provide critical mechanistic insights into the use of nanoscale sulfur as a multifunctional soil amendment to enhance plant performance as part of nanoenabled agriculture.


Nanoparticles , Solanum lycopersicum , Sulfur , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , Sulfur/metabolism , Sulfur/chemistry , Nanoparticles/chemistry , Nanoparticles/metabolism , Photosynthesis , Surface Properties , Time Factors , Fertilizers , Stearic Acids/metabolism , Stearic Acids/chemistry , Plant Leaves/metabolism
20.
J Phys Chem Lett ; 15(16): 4263-4267, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38607253

A novel covalent post-translational modification (lysine-NOS-cysteine) was discovered in proteins, initially in the enzyme transaldolase of Neisseria gonorrhoeae (NgTAL) [Nature 2021, 593, 460-464], acting as a redox switch. The identification of this novel linkage in solution was unprecedented until now. We present detection of the NOS redox switch in solution using sulfur K-edge X-ray absorption spectroscopy (XAS). The oxidized NgTAL spectrum shows a distinct shoulder on the low-energy side of the rising edge, corresponding to a dipole-allowed transition from the sulfur 1s core to the unoccupied σ* orbital of the S-O group in the NOS bridge. This feature is absent in the XAS spectrum of reduced NgTAL, where Lys-NOS-Cys is absent. Our experimental and calculated XAS data support the presence of a NOS bridge in solution, thus potentially facilitating future studies on enzyme activity regulation mediated by the NOS redox switches, drug discovery, biocatalytic applications, and protein design.


Oxidation-Reduction , Transaldolase , X-Ray Absorption Spectroscopy , Cysteine/chemistry , Cysteine/metabolism , Lysine/chemistry , Lysine/metabolism , Neisseria gonorrhoeae/enzymology , Neisseria gonorrhoeae/chemistry , Protein Processing, Post-Translational , Solutions , Sulfur/chemistry , Sulfur/metabolism , Transaldolase/metabolism , Transaldolase/chemistry
...